Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cancer Discov ; 12(4): 958-983, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-2108398

ABSTRACT

Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Antiviral Restriction Factors , COVID-19 , Neoplasms , T-Lymphocytes , Antibodies, Neutralizing , Antiviral Restriction Factors/immunology , COVID-19/immunology , Humans , Neoplasms/complications , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology
2.
J Surg Oncol ; 123(4): 815-822, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1055935

ABSTRACT

BACKGROUND AND OBJECTIVES: During the worldwide pandemic of coronavirus disease 2019 (COVID-19), oncological procedures considered to be urgent could not be delayed, and a specific procedure was required to continue surgical activity. The objective was to assess the efficacy of our preoperative screening algorithm. METHODS: This observational retrospective study was performed between the 25th of March and the 12th of May 2020 in a comprehensive cancer center in France. Patients undergoing elective oncologic surgery were tested by preoperative nasopharyngeal reverse-transcription polymerase chain reaction (RT-PCR) that could be associated with a chest computerized tomography (CT) scan. RESULTS: Of the 510 screening tests (in 477 patients), only 5% (15/477) were positive for COVID-19 in 24 patients (18 RT-PCR+ and 7 CT scan+/RT-PCR-). Four patients were ultimately false positives based on the CT scan. In total, only 4.2% (20/477) of the patients were COVID-19+. The positivity rate decreased with time after the containment measures were implemented (from 7.4% to 0.8%). In the COVID-19+ group, 20% of the patients had postoperative pulmonary complications, whereas this was the case for 5% of the patients in the COVID-19 group. CONCLUSIONS: Maintaining secure surgical activity is achievable and paramount in oncology care, even during the COVID-19 pandemic, with appropriate screening based on preoperative RT-PCR.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Infection Control/organization & administration , Neoplasms/surgery , Postoperative Complications/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , Adult , Aged , Aged, 80 and over , Algorithms , Cancer Care Facilities , Female , France , Humans , Incidence , Male , Middle Aged , Neoplasms/complications , Neoplasms/pathology , Predictive Value of Tests , Preoperative Care , Reproducibility of Results , Retrospective Studies , Tomography, X-Ray Computed , Young Adult
4.
Nat Cancer ; 1(10): 946-964, 2020 10.
Article in English | MEDLINE | ID: covidwho-834917

ABSTRACT

Coronavirus disease 2019 (COVID-19) and its causative virus, SARS-CoV-2, pose considerable challenges for the management of oncology patients. COVID-19 presents as a particularly severe respiratory and systemic infection in aging and immunosuppressed individuals, including patients with cancer. Moreover, severe COVID-19 is linked to an inflammatory burst and lymphopenia, which may aggravate cancer prognosis. Here we discuss why those with cancer are at higher risk of severe COVID-19, describe immune responses that confer protective or adverse reactions to this disease and indicate which antineoplastic therapies may either increase COVID-19 vulnerability or have a dual therapeutic effect on cancer and COVID-19.


Subject(s)
COVID-19/immunology , Humans , SARS-CoV-2
5.
Nat Cancer ; 1(10): 965-975, 2020 10.
Article in English | MEDLINE | ID: covidwho-798872

ABSTRACT

Patients with cancer are presumed to be at increased risk of severe COVID-19 outcomes due to underlying malignancy and treatment-induced immunosuppression. Of the first 178 patients managed for COVID-19 at the Gustave Roussy Cancer Centre, 125 (70.2%) were hospitalized, 47 (26.4%) developed clinical worsening and 31 (17.4%) died. An age of over 70 years, smoking status, metastatic disease, cytotoxic chemotherapy and an Eastern Cooperative Oncology Group score of ≥2 at the last visit were the strongest determinants of increased risk of death. In multivariable analysis, the Eastern Cooperative Oncology Group score remained the only predictor of death. In contrast, immunotherapy, hormone therapy and targeted therapy did not increase clinical worsening or death risk. Biomarker studies found that C-reactive protein and lactate dehydrogenase levels were significantly associated with an increased risk of clinical worsening, while C-reactive protein and D-dimer levels were associated with an increased risk of death. COVID-19 management impacted the oncological treatment strategy, inducing a median 20 d delay in 41% of patients and adaptation of the therapeutic strategy in 30% of patients.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/pathogenicity , Aged , Cohort Studies , Female , Humans , Male , Middle Aged
6.
Oncoimmunology ; 9(1): 1807836, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-741761

ABSTRACT

Over the past 16 years, three coronaviruses (CoVs), severe acute respiratory syndrome CoV (SARS-CoV) in 2002, Middle East respiratory syndrome CoV (MERS-CoV) in 2012 and 2015, and SARS-CoV-2 in 2020, have been causing severe and fatal human epidemics. The unpredictability of coronavirus disease-19 (COVID-19) poses a major burden on health care and economic systems across the world. This is caused by the paucity of in-depth knowledge of the risk factors for severe COVID-19, insufficient diagnostic tools for the detection of SARS-CoV-2, as well as the absence of specific and effective drug treatments. While protective humoral and cellular immune responses are usually mounted against these betacoronaviruses, immune responses to SARS-CoV2 sometimes derail towards inflammatory tissue damage, leading to rapid admissions to intensive care units. The lack of knowledge on mechanisms that tilt the balance between these two opposite outcomes poses major threats to many ongoing clinical trials dealing with immunostimulatory or immunoregulatory therapeutics. This review will discuss innate and cognate immune responses underlying protective or deleterious immune reactions against these pathogenic coronaviruses.


Subject(s)
COVID-19/immunology , Host Microbial Interactions/immunology , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/virology , Humans , Immunity, Cellular , Immunity, Humoral , Middle East Respiratory Syndrome Coronavirus/immunology , Protective Factors , Risk Factors , Severe acute respiratory syndrome-related coronavirus/immunology , Severity of Illness Index
7.
Cell ; 182(6): 1401-1418.e18, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-694669

ABSTRACT

Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Flow Cytometry , Humans , Leukocyte L1 Antigen Complex , Monocytes , Myeloid Cells , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL